Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1230718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809084

RESUMEN

Introduction: Human cytomegalovirus (HCMV) reactivation causes complications in immunocompromised patients after hematopoietic stem cell transplantation (HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer (aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation; however, the exact role of aNK cell memory in HCMV surveillance remains elusive. Methods: We employed mass spectrometry and computational prediction approaches to identify HLA-E-restricted HCMV peptides that can elucidate aNK cell responses. We also used the K562 cell line transfected with HLA-E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells were cocultured with dendritic cells (DCs) loaded with each of the identified peptides to examine aNK and conventional (c)NK cell responses. Results: Here, we discovered three unconventional HLA-E-restricted 15-mer peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR) derived from the HCMV pp65-protein that elicit aNK cell memory responses restricted to HCMV. aNK cells displayed memory responses towards HMCV-infected cells and HCMV-seropositive individuals when primed by DCs loaded with each of these peptides and predicted 9-mer versions. Blocking the interaction between HLA-E and the activation NKG2C receptor but not the inhibitory NKG2A receptor abolished these specific recall responses. Interestingly, compared to the HLA-E complex with the leader peptide VMAPRTLIL, HLA-E complexes formed with each of the three identified peptides significantly changed the surface electrostatic potential to highly negative. Furthermore, these peptides do not comprise the classical HLA-E-restriction motifs. Discussion: These findings suggest a differential binding to NKG2C compared to HLA-E complexes with classical leader peptides that may result in the specific activation of aNK cells. We then designed six nonameric peptides based on the three discovered peptides that could elicit aNK cell memory responses to HCMV necessary for therapeutic inventions. The results provide novel insights into HLA-E-mediated signaling networks that mediate aNK cell recall responses and maximize their reactivity.


Asunto(s)
Infecciones por Citomegalovirus , Humanos , Antígenos de Histocompatibilidad Clase I/metabolismo , Citomegalovirus/metabolismo , Células Asesinas Naturales , Péptidos/química , Antígenos HLA-E
2.
Int J Oncol ; 63(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37654195

RESUMEN

Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro­inflammatory enzymes 5­lipoxygenase (5­LO) and cyclooxygenase­2 (COX­2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin­embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki­67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5­LO and COX­2. The CRC cell lines Caco­2 and LS­174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti­inflammatory drug celecoxib (CCX) and analyzed by reverse transcription­quantitative PCR and immunofluorescence for 5­LO, COX­2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX­2, 5­LO and KI­67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5­LO and COX­2 transcript and proteins in both Caco­2 and LS­174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX­2, 5­LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Citomegalovirus , Humanos , Araquidonato 5-Lipooxigenasa/genética , Células CACO-2 , Ciclooxigenasa 2/genética , Antígeno Ki-67 , Proteínas Proto-Oncogénicas p21(ras)/genética , Celecoxib/farmacología , Citomegalovirus/genética , Ganciclovir , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/genética , Neoplasias Colorrectales/genética , Receptores ErbB
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...